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 Superalloy IN738LC is categorized as one of the most frequently 
utilized nickel base superalloys in the production of hot section 
components due to its multiphase microstructure maximizing its 
strength under elevated temperatures. In this study, a hot dip diffusion 
coating of aluminum was employed on the nickel-base superalloy 
Inconel 738LC substrate to enhance the hot corrosion resistance 
required for high-temperature applications, such as turbine blades. The 
aluminizing salt bath included Al powder with a particular composition, 
NaCl, KCl, Na3AlF6, and NaF. A thickness of about 48 µm was attained by 
applying the coating for 30 minutes at 720 °C. Bare and aluminized 
coated specimens were subjected to hot corrosion assessment in molten 
salt, with a composition of Na2SO4-25wt% NaCl at 720 °C being exposed 
for 60 and 140 hours. Scanning electron microscopy (SEM), energy 
dispersive spectroscopy (EDS), and X-ray diffraction (XRD) were 
conducted on the coating sample to ensure the successful deposition of 
the hot dip aluminized layer. The aluminized sample exhibited excellent 
corrosion resistance owing to the formation of an Al2O3 layer, which 
meant that after 140 hours of testing; very little coating deterioration 
was detected. In contrast, the naked sample suffered severe degradation 
and showed poor hot corrosion resistance. It was thought that the 
aluminized sample's superior hot corrosion resistance resulted from the 
uniform and dense growth of an Al2O3 protective scale without any 
cracks on the superalloy surface 
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GRAPHICAL ABSTRACT 

 
             _______________ 

Introduction  

In recent decades, nickel and nickel-based 

superalloys have been extensively applied in 

critical multi-areas including aviation, space, 

chemical and petrochemical industries [1-4]. 

Because of their notable high strength at high 

temperatures, significant resistance to oxidation 

and corrosion, high creep strength, heat 

resistance, excellent processability, and 

remarkable weldability, nickel-based superalloys 

are well-known as a class of high-performance 

alloys [5-7]. Nickel-based superalloys have 

introduced themselves as the enhancer of the life 

and efficiency of turbine engines under harsh 

conditions imposed by the turbine environment. 

They are thus widely used in gas turbine blades 

and other parts because of their superior high-

temperature mechanical qualities [8-12], and 

above all these segments must demonstrate a 

high level of oxidation and corrosion resistance 

under the combustion environment conditions 

[13-15]. To be more specific, thermochemical 

surface treatments have been broadly applied to 

provide oxidation resistance [16]. Superalloy 

IN738LC is one of the most frequently utilized 

nickel base superalloys in the production of hot 

section components [4,17-19]. IN738LC is well-

recognized for its multiphase microstructure, 

which enhances its strength at  

 

 

high temperatures. This is achieved by the 

presence of small particles of the Ll2 type 

ordered γ’ [Ni3(Al,Ti)] phase, which precipitate 

coherently inside the (FCC) γ matrix [20]. Surface 

coatings are broadly employed for these gamma 

prime materials, as the alloying requirements 

leads to a reduction in corrosion resistance. The 

primary concept of this technology involves 

choosing a substrate alloy with high strength to 

endure stress and applying a surface coating to 

provide optimal protection against corrosion 

from the environment [13]. Numerous 

techniques have been employed to fabricate a 

protective coating on Ni-based superalloys such 

as laser surface modification [21,22], high 

velocity oxy-fuel (HVOF) [23], ion implantation 

[24], electro-discharge coating [25,26], plasma 

spraying APS, LPPS, VPS, AXPS [27], and pack 

cementation [28]. The hot dip coating procedure 

is favorable among many surface modification 

methods due to its simplicity, speed, and cost-

effectiveness [29]. Hot corrosion is a significant 

cause of failure in high temperature components 
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of essential technical systems, including aviation 

and engine-power turbines [30]. Several 

varieties of protective coatings have been shown 

to provide exceptional resistance to high 

temperature oxidation and hot corrosion [31-

34]. Diffusion aluminide coatings are often used 

to effectively preserve jet engine components 

[35]. The development of an adhering layer of 

Al2O3 in diffusion aluminide coatings is a viable 

way for providing protection to super-alloys 

against corrosion. This method is widely utilized 

and highly desired [36-42]. An Al2O3 protective 

layer is well recognized for its superior oxidation 

resistance compared to other layers like Cr2O3. In 

addition, it remains intact without flaking even at 

high temperatures approaching 1300 °C. 

Furthermore, Al2O3 is very likely to provide 

sufficient resistance to oxidation for nickel-base 

superalloys [43-45] and it serves as a diffusion 

barrier that shields the substrate from fast 

deterioration [46]. Several methods are being 

employed to fabricate such an aluminide layer 

including electroplating, thermal spray coatings, 

chemical vapor deposition (CVD), pack 

aluminizing, laser cladding [47], electron-beam 

powder bed fusion [48], Reactive air aluminizing 

(RAA) [49], and hot dip coating [16]. According 

to the results of the study done by Barwinska et 

al. [50], hardness, fatigue response, service life, 

and high-temperature corrosion resistance of 

Inconel 740 nickel alloy were significantly 

improved by aluminizing through the chemical 

vapor deposition (CVD) process. This involved 

the use of AlCl3 vapors, a hydrogen protective 

atmosphere, the temperature of 1040 °C, 8 hours, 

and an internal pressure of 150 hPa. Mottaghi 

Golshan et al. [51] examined the laser process 

parameters, including laser power, laser 

scanning speed, and powder feeding rate, to 

determine their impact on the geometrical 

characteristics of aluminized Inconel 738 

superalloy produced through laser cladding. The 

findings of this study could serve as a valuable 

reference for aluminizing In738 using laser 

cladding technology. The cementation pack 

aluminizing process is often used to enhance the 

oxidation resistance of turbine blades made from 

Ni-based superalloys. The formation of a 

continuous, adherent, and slow-growing layer of 

α-Al2O3 is considered as crucial and very effective 

in achieving significant corrosion resistance for 

aluminide coatings. Aluminizing the surface of a 

nickel-based superalloy is a well-established and 

successful technique for creating and 

maintaining a protective Al2O3 scale [52]. The β-

NiAl aluminide coating is susceptible to 

brittleness and sulfur-induced separation, mostly 

caused by grain boundary corrosion. This 

separation ultimately weakens the oxide-metal 

interface, leading to exfoliation [53]. Among the 

various techniques mentioned, Hot Dip 

Aluminizing (HDA) [54-58], is a diffusion coating 

method often used to provide high temperature 

oxidation- and corrosion-resistant coatings on 

stainless steels and low-alloy steels. The first use 

of the hot dip method for aluminizing Ni-base 

turbine blades occurred in 1952 [59]. The 

distinguished privileges of this technique are 

remarkable yield, low operating costs and 

significant applicability for large-size work-

pieces [43,60] making hot-dip aluminizing a 

suitable technique [61,62], to develop a thick and 

adherent oxide layer of Al2O3 on the surface of 

aluminized components when they are subjected 

to an oxidizing environment [63-65] regulating 

the external infiltration of the alloying elements, 

while impeding the internal infiltration of 

corrosive substances [52]. 

Surveying the literature brings us about 

remarkable findings conducted on hot dip 

aluminizing alone and also modified aluminide 

coating type for hot corrosion resistance 

enhancement of Ni-based superalloys [66]. 

Accordingly, there have been scarce studies 

conducted on utilization of hot-dip aluminizing 

process through a solution containing Al powder 

and KCl/NaCl/NaF/Na3AlF6 molten salt. Thus, in 

this work, a novel hot-dip aluminizing process 
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has been employed to deposit aluminide coating 

on Ni-base superalloy Inconel 738. Finally, 

further characterizations including XRD, SEM and 

EDS are performed to investigate the hot 

corrosion behavior of the obtained specimens.  

Experimental 

Materials and specimens 

A commercial, nickel-base superalloy, IN738LC, 

(15.96% Cr–1.63% Mo– 3.31% Ti–3.52% Al–

0.69% Nb–1.83% Ta–3.08% W–8.53% Co–0.12% 

C, and Ni balance in wt.%), plate was used as the 

substrate material. Four specimens in the shape 

of a rectangle were cut to dimensions of 10×10×3 

mm through a water-cooled cutting machine for 

corrosion tests. Before hot dip aluminizing, the 

specimens were degreased in an acetone bath 

subsequently cleaned by ultrasonic in an ethanol 

bath, and dried in air. The mixture of 12.0% 

aluminum powder and 88% salt (25.0% KCl–

25.0% NaCl–28.0% Na3AlF6–10% NaF, in wt.%) 

was mixed and homogenized using a ball mill for 

15 minutes. The mixture then was melted in an 

alumina crucible at 720 °C. Two of the specimens 

were hung by stainless steel wires and inserted 

into the crucible containing molten salt. After 30 

min of insertion, the specimens were pulled out 

and air-cooled to room temperature. A mixed 

aqueous solution of nitric acid, phosphoric acid, 

and water in a 1:1:1 volume ratio at 25 °C was 

utilized to clean the hot-dipped specimen. 

Hot corrosion tests 

A supersaturated aqueous solution was prepared 

by mixing a corrosive medium consisting of a salt 

combination of Na2SO4-25%wt NaCl (in a ratio of 

3:1) with distilled water. To achieve optimal 

adherence of the salt to the specimens, the 

samples were first subjected to a temperature of 

about 200 °C in an oven. Subsequently, the warm 

specimens were immersed in a supersaturated 

solution, resulting in the homogeneous 

deposition of a blended salt coating. The salt 

concentration on the surface of the samples was 

maintained at an average of 3 mg/cm2. The 

specimens were positioned and dehydrated in a 

furnace, thereafter subjected to a temperature of 

about 720 °C, and maintained for durations of 60 

and 140 hours. The specimens were extracted 

from the furnace and, at intervals of 20 hours, 

their weight was measured and they were 

subjected to salt exposure and subsequent 

testing. During the last step, the objects were 

immersed in hot water to separate any remaining 

salts. Weight measurements were conducted to 

assess the rate of hot corrosion. Table 1 indicates 

the samples coding. 

Table1. Coding of the samples used in this study 

Sample Corrosion time  Coating 

A60 60 h Aluminized 

A140 140 h Aluminized 

B60 60 h Bare 

B140 140 h Bare 

 

Characterization methods 

X-ray diffraction (XRD) using EQUIPOX3000 

model (INEL Co. France) with Cu-Kα radiation (λ 

= 1.540510 Å) radiation was employed in order 

to identify the phase structures of the specimen 

surface. The X-ray diffraction (XRD) instrument 

tube operated at a voltage of 40 kilovolts (kV) 

and an electric current of 30 milliamperes (mA). 

The specimens were analyzed by using scanning 

electron microscopy (SEM) in conjunction with 

energy-dispersive spectrometry (EDS) to analyze 

their cross-sections and surface morphologies. 

The coating's thickness was determined by 

analyzing microscopic inspection and EDS data, 

which included graphing the concentrations of 

elements against the depth from the surface. 

Results and discussion 

XRD characterization 

Figure 1 depicts the XRD patterns of the IN738LC 

alloy in its original state (bare) and after 

exposure to hot corrosion at a temperature of 

720 oC for 60 hours (B60) and 140 hours (B140). 

Based on the acquired X-ray patterns, it is 
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evident that the surface of the B60 sample shows 

the presence of Cr2O3, TiO2, and NiCr2O4 phases 

after 60 hours of corrosion. While Cr2O3 exhibits 

a high level of corrosion resistance, TiO2 and 

NiCr2O4 show a relatively low level of resistance 

to corrosion [41]. 

However, the XRD spectra of the B140 sample do 

not even exhibit any peaks corresponding to the 

Cr2O3 phase. To be more specified, the existence 

of Cr2O3 peaks in the XRD pattern of the coating 

sample exposed to the corrosive molten salt for 

60 h is not necessarily sufficient for withstanding 

the corrosion attack due to the appearance of 

TiO2 and NiCr2O4 compounds possessing low 

levels of corrosion resistance, and this shaky 

corrosion resistance was worsened by exposing 

for 140 hours as a result of disappearance of 

Cr2O3 peaks. Consequently, bare IN738LC lacks 

the ability to withstand hot corrosion conditions. 

Figure 2 shows the XRD patterns of the 

aluminized coated samples before and after hot 

corrosion at 720 °C for 60 (A60) and 140 hours 

(A140). The existing peaks for aluminized 

coating before the corrosion test, at 32, 45, 55, 

and 67 °C correspond to (100), (110), (111), and 

(200) planes, respectively, which is attributed to 

NiAl phase. The obtained XRD pattern is in good 

consistency with the obtained XRD spectrum of 

NiAl phase in Aghayar’s research [67]. 

According to Figure 2, XRD patterns of the A60 

specimen confirm the existence of Al2O3 and NiAl 

diffraction peaks on the surface of the sample. 

The existence of Al2O3 leads to good corrosion 

resistance. Likewise, there was no trace of any 

other phases representing the destruction of the 

oxide layer. Furthermore, the X-ray pattern of the 

A140 specimen shows the presence of the 

NiAl2O4 phase, that reflects a very mild 

destruction in the surface [68]. 

Microstructure analysis 

Figure 3 clearly illustrates the cross-sectional 

BSE images of the aluminized coating prior to the 

hot corrosion investigation. A diffusion coating, 

about 48 ± 0.2 µm thick, is present between the 

aluminum layer and the substrate. This is shown 

by the vertical green line in the illustration. 

 

Fig 1.XRD patterns of the bare IN738LC before and after corrosion at 720 °C for 60 and 140 hours in the salt of 

Na2SO4-25wt% NaCl 
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Fig 2.XRD patterns of the aluminized coating before and after corrosion at 720 °C for 60 and 140 hours in the salt 

of Na2SO4-25wt% NaCl 

 

Fig 3.Cross-sectional BSE images of the aluminized coating specimens with a thickness of about 48 µm before the 

corrosion test 

The coating consists of both exterior and interior 

zones. The interior region has a compact and 

homogeneous composition, while the 

surrounding region displays a porous 

composition. The figure demonstrates that the 

coating possesses a continuous and solid 

structure, with the major parts equally 

distributed and no visible fractures. In addition, 

the coating displays strong adherence to the 

substrate. Figure 3 shows the diffusion curve 

over the coatings' thickness, indicating the 

outward diffusion of the substrate components. 

Spots 1-4, 5-17, and 18-20 corresponded to the 

aluminum topcoat, diffusion layer, and the 

IN738LC superalloy substrate, respectively. 

Table 2 displays the allocation and proportion of 

various constituents in the coating. There is 66% 

Al and 20% Ni in the exterior layer of the coating, 
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while in the coating-substrate interface, 44% Al 

and 42% Ni were found. X-ray diffraction of the 

coated specimen showed that the coating was 

composed mainly of one phase which was NiAl. 

Hence, this is in good agreement with the EDS 

results and Ni-Al phase diagram [69], which 

showed the downward diffusion of Al. 

The NiAl synthesis on the substrate in hot-dip 

aluminize coating in the molten salt is facilitated 

by the generation of Al3+ ions in a mixture of 

molten chloride alkali metals, Al powder, and 

Na3AlF6 in which the reaction (1) would be 

written as below [70]:  

2Al0 + Al3+ = 3Al+                                                          (1) 

The obtained Al+ ions can react with elements 

possessing higher levels of electronegativity. 

Since the substrate used in this study is a Ni-

based superalloy, the NiAl phase could be 

obtained as a result of the reaction (2): 

3Al+ + 2Ni = 2NiAl + Al3+                  (2) 

Figure 4a demonstrates the cross-sectional BSE 

image of the bare IN738LC before the hot 

corrosion test. According to the EDS results (Fig 

4b), the white-colored deposit in the coating 

(point A) is mainly composed of Ti, Ta, and W. 

This also implies that the Al elements had 

diffused into the substrate. 

Table2. Distribution and the relative content of various elements in the coating 

Distance from surface coating (µm) Ni content (%) Al content (%) Cr content (%) Co content (%) 

0 20 66 12 1.5 

10 27 64 5.6 2.6 

20 39 49 8.5 3 

30 37 53 7 2 

40 41 47 8 4 

47 42 44 9 5 

 

 

Fig 4.SEM images (a) and EDS analysis of A point (b) in bare IN738LC before the hot corrosion test 

Hot corrosion behavior 

Figure 5 displays the cross-sectional view of the 

A60 and A140 specimens. The coating and the 

interface between the coating and substrate 

remain intact, with no visible cracks even in the 

A140 sample. This indicates that the coating 

effectively protects IN738LC against hot 

corrosion. In addition, after 140 hours of heat 

corrosion, the microstructure of the layers and 

coating surface became flattened. The EDS 

findings further indicate that the substrate 

components are well-shielded from hot 

corrosion due to the existence of a protective 

layer composed of Al2O3. 
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Fig 5.Line scanning images on the cross-sections of 

the aluminized coating specimen after corrosion at 

720 oC for (a) 60 and (b) 140 hours in the salt of 

Na2SO4-25wt% NaCl 

Figure 6 depicts the cross-sectional view of the 

B60 and B140 specimens. Upon observing the 

sample surface after 60 hours of heat corrosion, 

it is evident that corrosion has occurred and the 

resulting corrosion product has suffered some 

minor damage.  

 

 

Fig 6.Cross-section of the hot corroded uncoated 

sample after corrosion at 720 ℃ for (a) 60 and (b) 140 

hours in the salt of Na2SO4-25wt% NaCl 

Furthermore, when the corrosion period 

increases, the spread of corrosive components 

and the depth of corrosion diffusion 

progressively increase. The corrosion process 

involves the gradual production of layers of 

reaction products along the contact, resulting in 

the creation of a laminar structure. These layers 

exhibit rapid growth and are readily separated 
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from the surface. Moreover, the Energy 

Dispersive Spectroscopy (EDS) analysis of this 

sample reveals that essential components like 

Nickel (Ni) and Chromium (Cr) from the 

substrate are involved in the corrosion 

processes. The damage process is similar to 

thermal oxidation, but the presence of corrosive 

salts in molten form intensifies the damage, 

leading to the development of corrosion 

phenomena. This intensified corrosion damage is 

clearly seen at the grain boundaries. Figure 7a 

and 7b show the SEM images of the A60 and 

A140 specimens. Obviously, the Al2O3 layer is 

formed after 60 hours which is consistent with 

the XRD analysis. By increasing the corrosion 

time to 140 h, no particular change was observed 

in the morphology; however, the oxide layer is 

marginally scaled. 

 

Fig 7.SEM images of the hot-dip aluminized sample after hot corrosion test for (a) 60 and (b) 140 hours 

 

Fig 8.Weight change of hot corrosion test for coated and bare specimens 
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Corrosion kinetics 

The hot corrosion kinetic figures of the bare and 

the aluminized coated IN738LC are illustrated in 

Figure 8. 

The mass change involves an increase in mass 

(reaching a weight limit of 4 mg/cm2 after 120 

hours) due to the development of scales, and a 

decrease in mass (with a progressively steeper 

slope) caused by the shedding of scales. 

Therefore, the change in mass of the specimen in 

molten salt reflects the combined influence of 

these two processes. 

The uncoated and the aluminized coated 

IN738LC alloy exhibit distinct corrosion 

characteristics when exposed to molten salt. 

According to the information shown in Figure 8, 

the IN738LC material exhibits poor resistance to 

heat corrosion, which may be related to the 

volatile nature of chloride. Due to the low melting 

temperatures and high vapor pressure of most 

metal chlorides, chlorine has a tendency to 

rapidly diffuse out through the oxide scale. It 

then reacts with alloying elements such as 

aluminum and chromium at the oxide/metal 

interface, resulting in the formation of volatile 

chlorides [41,71]. Moreover, the Cr2O3 creation 

might contribute to weight reduction due to the 

evaporation of chromium oxides and hydroxides, 

resulting in the loss of Cr from the surface. 

Moreover, the significant decrease in the curve 

might be attributed to the existence of low-

melting-point phases located at the interfaces 

between grains, which serve as efficient 

pathways for diffusion [13]. The molten salt may 

quickly disperse and react with the alloy via 

these pathways. The use of an aluminized coating 

enhanced the alloy's resistance to heat corrosion. 

The first stage of exposure to the molten salt 

combination resulted in a significant rise in mass, 

reaching a maximum gain of 2.9 mg/cm2 after 

about 40 hours. Subsequently, the mass gain 

stabilized at a relatively low level, indicating a 

stable state in the second stage. It may be 

inferred that during the second stage, the rate at 

which the oxidation film grew was equal to the 

rate at which it peeled off. 

Conclusion 

An aluminized coating was applied to the Ni-

based superalloy IN738LC by immersing it in a 

combination of Al powder and molten salt 

consisting of KCl, NaCl, NaF, and Na3AlF6. The 

molten salt facilitates the formation of a dense 

and homogeneous coating with a high 

concentration of aluminum. The data obtained 

show that the coating consists mostly of a NiAl 

matrix. Subsequent experiments revealed that 

the uncoated Ni-based superalloy IN738LC had a 

low resistance to corrosion in high-temperature 

corrosive conditions, while the aluminized 

coating, with a thickness of about 48 µm, 

exhibited exceptional resistance to corrosion in 

the Na2SO4-25wt% NaCl salt combination at 720 

°C. This resistance may be attributed to the 

creation of the Al2O3 phase. 
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